Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 159

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Simulation-based dynamic probabilistic risk assessment of an internal flooding-initiated accident in nuclear power plant using THALES2 and RAPID

Kubo, Kotaro; Zheng, X.; Tanaka, Yoichi; Tamaki, Hitoshi; Sugiyama, Tomoyuki; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*

Proceedings of the Institution of Mechanical Engineers, Part O; Journal of Risk and Reliability, 237(5), p.947 - 957, 2023/10

 Times Cited Count:4 Percentile:67.32(Engineering, Multidisciplinary)

Probabilistic risk assessment (PRA) is a method used to assess the risks associated with large and complex systems. However, the timing at which nuclear power plant structures, systems, and components are damaged is difficult to estimate if the risk of an external event is evaluated using conventional PRA based on event trees and fault trees. A methodology coupling thermal-hydraulic analysis with external event simulations using Risk Assessment with Plant Interactive Dynamics (RAPID) is therefore proposed to overcome this limitation. A flood propagation model based on Bernoulli's theorem was applied to represent internal flooding in the turbine building of the pressurized water reactor. Uncertainties were also taken into account, including the flow rate of the floodwater source and the failure criteria for the mitigation systems. The simulated recovery actions included the operator isolating the floodwater source and using a drainage pump; these actions were modeled using several simplifications. Overall, the results indicate that combining isolation and drainage can reduce the conditional core damage probability upon the occurrence of flooding by approximately 90%.

Journal Articles

Application of quasi-Monte Carlo and importance sampling to Monte Carlo-based fault tree quantification for seismic probabilistic risk assessment of nuclear power plants

Kubo, Kotaro; Tanaka, Yoichi; Hakuta, Yuto*; Arake, Daisuke*; Uchiyama, Tomoaki*; Muramatsu, Ken

Mechanical Engineering Journal (Internet), 10(4), p.23-00051_1 - 23-00051_17, 2023/08

The significance of probabilistic risk assessments (PRAs) of nuclear power plants against external events was re-recognized after the Fukushima Daiichi Nuclear Power Plant accident. Regarding the seismic PRA, handling correlated failures of systems, components, and structures (SSCs) is very important because this type of failure negatively affects the redundancy of accident mitigation systems. The Japan Atomic Energy Research Institute initially developed a fault tree quantification methodology named the direct quantification of fault tree using Monte Carlo simulation (DQFM) to handle SSCs' correlated failures in detail and realistically. This methodology allows quantifying the top event occurrence probability by considering correlated uncertainties related to seismic responses and capacities with Monte Carlo sampling. The usefulness of DQFM has already been demonstrated. However, improving its computational efficiency would allow risk analysts to perform several analyses. Therefore, we applied quasi-Monte Carlo and importance sampling to the DQFM calculation of simplified seismic PRA and examined their effects. Specifically, the conditional core damage probability of a hypothetical pressurized water reactor was analyzed with some assumptions. Applying the quasi-Monte Carlo sampling accelerates the convergence of results at intermediate and high ground motion levels by an order of magnitude over Monte Carlo sampling. The application of importance sampling allows us to obtain a statistically significant result at a low ground motion level, which cannot be obtained through Monte Carlo and quasi-Monte Carlo sampling. These results indicate that these applications provide a notable acceleration of computation and raise the potential for the practical use of DQFM in risk-informed decision-making.

Journal Articles

Impact of MOX fuel use in light-water reactors; Long-term radiological consequences of disposal of high-level waste in a geological repository

Minari, Eriko*; Kabasawa, Satsuki; Mihara, Morihiro; Makino, Hitoshi; Asano, Hidekazu*; Nakase, Masahiko*; Takeshita, Kenji*

Journal of Nuclear Science and Technology, 60(7), p.793 - 803, 2023/07

 Times Cited Count:2 Percentile:50.96(Nuclear Science & Technology)

Journal Articles

Accident sequence precursor analysis of an incident in a Japanese nuclear power plant based on dynamic probabilistic risk assessment

Kubo, Kotaro

Science and Technology of Nuclear Installations, 2023, p.7402217_1 - 7402217_12, 2023/06

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Effectiveness evaluation methodology of the measures for improving resilience of nuclear structures against excessive earthquake

Kurisaka, Kenichi; Nishino, Hiroyuki; Yamano, Hidemasa

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05

The objective of this study is to develop an effectiveness evaluation methodology of the measures for improving resilience of nuclear structures against excessive earthquake by applying the failure mitigation technology. This study regarded those measures for improving resilience of important structures, systems, and components for safety to enlarge their seismic safety margin. To evaluate effectiveness of those measures, seismic core damage frequency (CDF) is selected as an index. Reduction of CDF as an effectiveness index is quantified by applying seismic PRA technology. Accident sequences leading to loss of decay heat removal are significant contributor to seismic CDF of sodium-cooled fast reactors (SFRs), and those sequences result in core damage via ultra-high temperature condition. This study improved the methodology to evaluate not only the measures against shaking due to excessive earthquake but also the measures at the ultra-high temperature condition. To examine applicability of the improved methodology, a trial calculation was implemented with some assumptions for a loop-type SFR. Within the assumption, the measures for improving resilience were significantly effective for decreasing CDF in excessive earthquake up to several times of a design basis ground motion. Through the applicability examination, the methodology for the effectiveness evaluation was developed successfully.

Journal Articles

Analysis by hazard plotting on steam generator tube leak in sodium-cooled fast reactors Phenix and BN600

Kurisaka, Kenichi

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

This study aims to understand a time trend of the occurrence rate of steam generator (SG) tube leak in the existing sodium-cooled fast reactors (SFRs) based on the observed data. The target on SFRs in the present paper is Phenix in France and BN600 in Russia. From the open literature review, we investigated the number of tube-to-tube plate weld, the number of tube-to-tube weld, heat transfer area of tube base metal, operating time of SGs, dates when SG tube leak occurred, leaked location, corrective action after tube leak such as replacement of leaked module. Based on these observed data, time to leak is estimated and then time trend of the occurrence rate of SG tube leak for each of the above-mentioned parts was quantitatively analyzed by the hazard plotting method. As a result, the rate of leak at tube-to-tube weld in Phenix shows increase with time due to probable cause of cyclic thermal stress in a short term. As for a long-term trend, the rate of tube leak in both Phenix and BN600 SGs indicated decrease with time probably thanks to improvement in welding and in SG operating condition and to removal of initial failure.

Journal Articles

Journal Articles

Dynamic probabilistic risk assessment of seismic-induced flooding in pressurized water reactor by seismic, flooding, and thermal-hydraulics simulations

Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*

Journal of Nuclear Science and Technology, 60(4), p.359 - 373, 2023/04

 Times Cited Count:5 Percentile:83.25(Nuclear Science & Technology)

Probabilistic risk assessment (PRA) is an essential approach to improving the safety of nuclear power plants. However, this method includes certain difficulties, such as modeling of combinations of multiple hazards. Seismic-induced flooding scenario includes several core damage sequences, i.e., core damage caused by earthquake, flooding, and combination of earthquake and flooding. The flooding fragility is time-dependent as the flooding water propagates from the water source such as a tank to compartments. Therefore, dynamic PRA should be used to perform a realistic risk analysis and quantification. This study analyzed the risk of seismic-induced flooding events by coupling seismic, flooding, and thermal-hydraulics simulations, considering the dependency between multiple hazards explicitly. For requirements of safety improvement, especially in light of the Fukushima Daiichi Nuclear Power Plant accident, sensitivity analysis was performed on the seismic capacity of systems, and the effectiveness of alternative steam generator injection by a portable pump was estimated. We demonstrate the use of this simulation-based dynamic PRA methodology to evaluate the risk induced by a combination of hazards.

JAEA Reports

Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-072, 116 Pages, 2023/03

JAEA-Review-2022-072.pdf:6.32MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment" conducted in FY2021. The present study aims to establish the rational waste disposal concept of a variety of wastes generated in 1F by the novel hybrid-waste-solidification. The phosphate form of ALPS sediment wastes containing Eu$$^{3+}$$, Ce$$^{4+}$$, Sr$$^{2+}$$ and Cs$$^{+}$$ were synthesized as well as radioactive $$^{95}$$Sr, $$^{136}$$Cs and $$^{126}$$I which are both $$gamma$$ emitters, AREVA sludge and Iodine Calcium apatite were synthesized, and they were processed to the stabilization treatment such as sintering and Spark Plasma ...

JAEA Reports

Consideration on roles and relationship between observations/measurements and model predictions for environmental consequence assessments for nuclear facilities

Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori

JAEA-Review 2022-049, 76 Pages, 2023/01

JAEA-Review-2022-049.pdf:3.74MB

Before construction and after operation of nuclear facilities, environmental consequence assessments are conducted for normal operation and an emergency. These assessments mainly aim at confirming safety for the public around the facilities and producing relief for them. Environmental consequence assessments are carried out using observations/ measurements by environmental monitoring and/or model predictions by calculation models, sometimes using either of which and at other times using both them, according to the situations and necessities. First, this report investigates methods, roles, merits/demerits and relationship between observations/measurements and model predictions which are used for environmental consequence assessments of nuclear facilities, especially holding up a spent nuclear fuel reprocessing plant at Rokkasho, Aomori as an example. Next, it explains representative examples of utilization of data on observations/measurements and results on model predictions, and considers points of attention at using them. Finally, the report describes future direction, for example, improvements of observations/measurements and model predictions, and fusion of both them.

Journal Articles

The Development of Petri Net-based continuous Markov Chain Monte Carlo methodology applying to dynamic probability risk assessment for multi-state resilience systems with repairable multi-component interdependency under longtermly thereat

Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi

Journal of Nuclear Science and Technology, 23 Pages, 2023/00

 Times Cited Count:1 Percentile:68.31(Nuclear Science & Technology)

Journal Articles

Quantification of risk dilution induced by correlation parameters in dynamic probabilistic risk assessment of nuclear power plants

Kubo, Kotaro; Tanaka, Yoichi*; Ishikawa, Jun

Proceedings of the Institution of Mechanical Engineers, Part O; Journal of Risk and Reliability, 11 Pages, 2023/00

 Times Cited Count:1 Percentile:0.01(Engineering, Multidisciplinary)

Journal Articles

The OECD/NEA Working Group on the Analysis and Management of Accidents (WGAMA); Advances in codes and analyses to support safety demonstration of nuclear technology innovations

Nakamura, Hideo; Bentaib, A.*; Herranz, L. E.*; Ruyer, P.*; Mascari, F.*; Jacquemain, D.*; Adorni, M.*

Proceedings of International Conference on Topical Issues in Nuclear Installation Safety; Strengthening Safety of Evolutionary and Innovative Reactor Designs (TIC 2022) (Internet), 10 Pages, 2022/10

Journal Articles

Overview of event progression of evaporation to dryness caused by boiling of high-level liquid waste in Reprocessing Facilities

Yamaguchi, Akinori*; Yokotsuka, Muneyuki*; Furuta, Masayo*; Kubota, Kazuo*; Fujine, Sachio*; Mori, Kenji*; Yoshida, Naoki; Amano, Yuki; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 21(4), p.173 - 182, 2022/09

Risk information obtained from probabilistic risk assessment (PRA) can be used to evaluate the effectiveness of measures against severe accidents in nuclear facilities. The PRA methods used for reprocessing facilities are considered immature compared to those for nuclear power plants, and to make the methods mature, reducing the uncertainty of accident scenarios becomes crucial. In this paper, we summarized the results of literature survey on the event progression of evaporation to dryness caused by boiling of high-level liquid waste (HLLW) which is a severe accident in reprocessing facilities and migration behavior of associated radioactive materials. Since one of the important characteristics of Ru is its tendency to form volatile compounds over the course of the event progression, the migration behavior of Ru is categorized into four stages based on temperature. Although no Ru has been released in the waste in the high temperature region, other volatile elements such as Cs could be released. Sufficient experimental data, however, have not been obtained yet. It is, therefore, necessary to further clarify the migration behavior of radioactive materials that predominantly depends on temperature in this region.

Journal Articles

Uncertainty analysis of dynamic PRA using nested Monte Carlo simulations and multi-fidelity models

Zheng, X.; Tamaki, Hitoshi; Takahara, Shogo; Sugiyama, Tomoyuki; Maruyama, Yu

Proceedings of Probabilistic Safety Assessment and Management (PSAM16) (Internet), 10 Pages, 2022/09

Journal Articles

A Scoping study on the use of direct quantification of fault tree using Monte Carlo simulation in seismic probabilistic risk assessments

Kubo, Kotaro; Fujiwara, Keita*; Tanaka, Yoichi; Hakuta, Yuto*; Arake, Daisuke*; Uchiyama, Tomoaki*; Muramatsu, Ken*

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 8 Pages, 2022/08

After the Fukushima Daiichi Nuclear Power Plant accident, the importance of conducting probabilistic risk assessments (PRAs) of external events, especially seismic activities and tsunamis, was recognized. The Japan Atomic Energy Agency has been developing a computational methodology for seismic PRA, called the direct quantification of fault tree using Monte Carlo simulation (DQFM). When appropriate correlation matrices are available for seismic responses and capacities of components, the DQFM makes it possible to consider the effect of correlated failures of components connected through AND and/or OR gates in fault trees, which is practically difficult when methods using analytical solutions or multidimensional numerical integrations are used to obtain minimal cut set probabilities. The usefulness of DQFM has already been demonstrated. Nevertheless, a reduction of the computational time of DQFM would allow the large number of analyses required in PRAs conducted by regulators and/or operators. We; therefore, performed scoping calculations using three different approaches, namely quasi-Monte Carlo sampling, importance sampling, and parallel computing, to improve calculation efficiency. Quasi-Monte Carlo sampling, importance sampling, and parallel computing were applied when calculating the conditional core damage probability of a simplified PRA model of a pressurized water reactor, using the DQFM method. The results indicated that the quasi-Monte Carlo sampling works well at assumed medium and high ground motion levels, importance sampling is suitable for assumed low ground motion level, and that parallel computing enables practical uncertainty and importance analysis. The combined implementation of these improvements in a PRA code is expected to provide a significant acceleration of computation and offers the prospect of practical use of DQFM in risk-informed decision-making.

Journal Articles

Development of dynamic PRA methodology for external hazards (Application of CMMC method to severe accident analysis code)

Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi

Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2022/07

Identifying accident scenarios that could lead to severe accidents and evaluating their frequency of occurrence are essential issues. This study aims to establish the methodology of the dynamic Probabilistic Risk Assessment (PRA) for sodium-cooled fast reactors that can consider the time dependency and the interdependence of each event. Specifically, the Continuous Markov chain Monte Carlo (CMMC) method is newly applied to the SPECTRA code, which analyzes the severe accident conditions of nuclear reactors, to develop an evaluation methodology for typical external hazards. Currently, a fault-tree model of air coolers of decay heat removal system is implemented as the CMMC method, and a series of preliminary analysis of the plant's transient characteristics under the scenario of volcanic ashfall has been conducted.

Journal Articles

Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations

Zheng, X.; Tamaki, Hitoshi; Sugiyama, Tomoyuki; Maruyama, Yu

Reliability Engineering & System Safety, 223, p.108503_1 - 108503_12, 2022/07

 Times Cited Count:17 Percentile:91.72(Engineering, Industrial)

Journal Articles

Response reduction effect of seismic isolation system considering uncertainty parameters for seismic margin assessment

Yamano, Hidemasa; Okamura, Shigeki*

Transactions of the 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 9 Pages, 2022/07

Seismic response analyses were conducted for the pipe with and without the seismic isolation system based on the response waveforms. This study performed a fragility analysis by setting uncertainty parameters on the basis of existing studies. The comparison results showed that the seismic isolation technology is effective for the pipe to prevent cliff-edge effects. In other words, the seismic margin for the seismically isolated plant is 1.2 times larger than that of the non-isolated plant. To evaluate the response reduction effect, this study focused on response coefficients of components as uncertainty parameters, which were specified within a physically possible range. Even if the uncertainty is considered, the HCLPF for the isolated plant is nearly twice as high as the non-isolated plant, namely the response reduction effect is still significant for the isolated plant. Therefore, the isolation technology is effective to avoid cliff-edge effects.

Journal Articles

Current status of Geological disposal by "all-Japan" activities, 6; Post-closure safety assessment (2)

Tachi, Yukio; Saito, Takumi*; Kirishima, Akira*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 64(5), p.290 - 295, 2022/05

no abstracts in English

159 (Records 1-20 displayed on this page)